

OpenRiver

Nursing DNP Projects

Nursing - Graduate Studies

Fall 9-2020

PPE Compliance and Knowledge Among Healthcare Staff

Beatrice Hagert beatrice.hagert@go.winona.edu

Nicole Krummel nhealy10@winona.edu

Follow this and additional works at: https://openriver.winona.edu/nursingdnp

Part of the Infectious Disease Commons, Interprofessional Education Commons, Nursing Commons, and the Quality Improvement Commons

Recommended Citation

Hagert, Beatrice and Krummel, Nicole, "PPE Compliance and Knowledge Among Healthcare Staff" (2020). *Nursing DNP Projects*. 37. https://openriver.winona.edu/nursingdnp/37

This Project Paper is brought to you for free and open access by the Nursing – Graduate Studies at OpenRiver. It has been accepted for inclusion in Nursing DNP Projects by an authorized administrator of OpenRiver. For more information, please contact klarson@winona.edu.

Abstract

Problem: One of the most important steps in infection prevention is the use of personal protective equipment (PPE) to protect patients and staff from infectious agents; yet, research indicates that PPE compliance remains suboptimal in many healthcare institutions.

Purpose: To identify the effect of a multidisciplinary education campaign on PPE compliance and knowledge among healthcare workers (HCWs) on a rehabilitation unit of a large, midwestern teaching hospital.

Methods: This project utilized pre-intervention observational audits and a survey to determine baseline PPE compliance and knowledge on the piloted units. A post-intervention survey was sent to HCW to assess for a change in knowledge.

Interventions: Educational material regarding proper PPE usage and knowledge gaps gathered from the pre-intervention survey was sent to all staff virtually. Educational materials were also posted throughout the unit and discussed during team huddles.

Results: Pre-intervention observational audits showed 21.64% (n=97) correctly donned and doffed PPE according to the institution's policy. Comparison of pre-to post-survey data showed no significant change in all four knowledge-based questions (p=0.45, p=1.00, p=0.69, p=1.00).

Conclusion: Staff showed knowledge regarding proper PPE use prior to the intervention. However, compliance was suboptimal. This data indicates

that despite staff being knowledgeable on proper use, other barriers exist that lead to a lack of compliance with PPE policies.

Key Words: PPE, compliance, Personal Protective Equipment,

multidiscipline, education

1	Introduction
2	Healthcare-associated infections (HAIs) pose a threat to both patients and
3	healthcare staff. HAI is defined as an infection that develops during treatment for
4	another condition (Office of Disease Prevention and Health Promotion, 2019).
5	Occurrence of HAIs can lead to severe, costly, and fatal consequences. Over one
6	million HAIs occur across the United States (U.S.) health care system every year
7	and lead to over tens of thousands of deaths annually (AHRQ, 2019).
8	Additionally, HAIs cost hospitals between 28 and 45 billion dollars in direct costs
9	per year (Stone, 2010).
10	Communicable diseases have been identified as a major factor that
11	increases the risk for HAIs (Office of Disease Prevention and Health Promotion,
12	2019). A communicable disease is a disease that can be passed between patients
13	and healthcare workers (HCWs) through a variety of routes. In the in-patient
14	setting, many practices exist to prevent the spread of this type of disease. One of
15	the most well-known and important steps in preventing the spread of
16	communicable diseases is the use of personal protective equipment (PPE)
17	(Wisconsin Department of Health Services, 2018). Despite evidence suggesting
18	the effectiveness of PPE in infection prevention, research suggests that
19	compliance of PPE use among HCWs continues to be suboptimal (Allen &
20	Cronin, 2012; Jain, Dogra, Mishra, Thakur, & Loomba, 2013; Larkin, et al.,
21	2017).
22	Available Knowledge

23	A review of the literature was completed to define the problem. Current
24	articles in a selection of journals describe studies to indicate that PPE compliance
25	is suboptimal in a variety of healthcare settings, including in-patient facilities. The
26	research also strongly supports the importance of PPE in preventing infection. A
27	literature review was conducted searching the databases CINAHL, PubMed, and
28	ScienceDirect. The inclusion criteria were: articles published in English,
29	published in the last ten years, from a peer-reviewed journal, and focused on PPE
30	compliance and knowledge among HCWs. Exclusion criteria were articles not
31	related to PPE compliance and knowledge, older than ten years, and articles
32	without an English version available. One study by Larson (2004) was used
33	despite being older than ten years old as it was determined to be of high-quality
34	and contained an established survey tool that was modified and used to gather
35	data in this project.
36	Overall, the literature showed that PPE compliance remains less than
37	optimal across many healthcare institutions and remains an area for improvement
38	at the piloted facility. Following review of the literature, it can be concluded that
39	identifying barriers to PPE compliance is a key step in developing and
40	implementing an effective intervention (Allen & Cronin, 2012; Alsmeyer, 2014;
41	Andonian, et al., 2019; Baloh, et al., 2019; Bruce, 2013; Harrod et al., 2019; Jain,
42	et al., 2013; Larkin et al., 2017). It was also found that PPE compliance is
43	suboptimal among a variety of disciplines, and favored a multidisciplinary
44	approach (Beam, et al., 2011; Doll, et al., 2017; Harrod, et al., 2019; Jain, et al.,
45	2013; & Larkin, et al., 2017). Interventions studied within the research include

46	audits, education in a variety of forms, visual aids, or a combination of
47	interventions (Allen & Cronin, 2012; Alsmeyer, 2014; Andonian, et al., 2019;
48	Beam, et al., 2011; Bruce, 2013; Larkin, et al., 2017; Mauger, et al., 2014; Tomas,
49	et al., 2015). The interventions implemented within the research review were all
50	suggested to be effective in improving PPE compliance and/or knowledge
51	(Larkin, et al., 2017; Mauger, et al., 2014; Tomas, et al., 2015). However, many
52	studies noted that further research to analyze the long-term effects of the
53	interventions would be beneficial in determining long-term effectiveness.
54	In summary, the literature review indicated that a combination of
55	education, visual aids, and audits with feedback have shown to be successful in
56	increasing appropriate PPE compliance and staff knowledge. Additionally, the
57	research supports a multidisciplinary approach to improve compliance as
58	compliance was shown to be suboptimal among all HCWs. A majority of the
59	research used audits or surveys to determine the intervention to be implemented
60	and are recommended as an effective measurement tool for PPE use.
61	Rationale
62	The Change Theory by Kurt Lewin was utilized as the theoretical basis for
63	this project (Petiprin, 2016). The Change Theory is a three-stage process that
64	requires an individual to reject prior learning. The three stages in Lewin's theory
65	are unfreezing, change, and refreezing (Petiprin, 2016). Unfreezing involves a
66	process of letting go of the old pattern of practice or knowledge that is
67	counterproductive. The second stage involves the changing of counterproductive

68	thoughts and behaviors. Finally, the refreezing stage involves making new
69	thoughts and behaviors into a habit (Petiprin, 2016).
70	Lewin's theory guided this project. The behavior that was identified by the
71	projects institutional leadership as counterproductive was low compliance of staff
72	utilizing PPE correctly. The first step was to inform staff of this behavior and
73	educate them on the consequences associated with noncompliance. During
74	the first stage, investigators identified which knowledge and behaviors
75	had become a pattern in order to address them, which was the rationale for the
76	pre-intervention survey and audits. Additionally, Lewin's theory states that it is
77	vital to overcome individual resistance and group conformity in this stage
78	(Petiprin, 2016). Next, the implementation of a multidisciplinary
79	educational intervention was used to change the behaviors and patterns of staff to
80	increase PPE compliance. In this stage, staff were provided with education to
81	support productive behavior change. Lastly, the investigators and team
82	guided staff to establish new knowledge and practices as habits in the refreezing
83	stage. Ideally, the staff will utilize their new knowledge and change their practice
84	as guided through these three stages of Lewin's Change Theory.
85	Additionally, the Iowa Model of Evidence-Based Practice to Promote
86	Quality Care (Titler, et al., 2001) was utilized as the framework for this project.
87	The Iowa Model provides a guideline for decision making related to clinical and
88	administrative practices that affect patient outcomes. It assists healthcare
89	providers in translating quality research findings into clinical practice to improve
90	patient outcomes, which is the goal of this project (Brown, 2014). The Iowa

91	Model is a multiphase model and was chosen to be the framework for this project
92	as it is a streamlined change process that applied to the clinical question being
93	explored. Additionally, the Iowa Model puts focus on organization collaboration
94	as it incorporates the conduct and use of research as the guiding method for
95	intervention protocol (Doody & Doody, 2011). Because the institution identified
96	PPE compliance as a priority and there was a sufficient literature on possible
97	interventions, it was identified that the change was appropriate for adoption
98	into practice. These qualities aligned with the guiding principles of
99	the Iowa Model.
100	Aims
101	Infection prevention is a top priority at many healthcare facilities.
102	The institution identified infection prevention as a crucial area for
103	improvement on the piloted units (S. Johnson, personal communication,
104	November 26, 2019). Many approaches to increase staff knowledge and
105	compliance have been explored. Evidence supports use of a variety of
106	interventions including education, regular auditing, and visual aids (Allen &
107	Cronin, 2012; Alsmeyer, 2014; Doll, et al., 2017; Larkin, et al., 2017). It also
108	shows that the need for improvement lies within all disciplines (Mitchell, et al.,
109	2013). Therefore, this project aimed to identify gaps in knowledge regarding PPE
110	among HCWs, and barriers to PPE compliance. Furthermore, the goal was
111	to develop and implement an educational intervention to study the effect it has on
112	these variables. The clinical question for this project was: For healthcare
113	professionals in the rehabilitation setting of a teaching hospital, how does a

114 multidisciplinary educational infection prevention campaign affect PPE

- 115 compliance and staff knowledge?
- 116

Methods

117 Context

The project was implemented on two inpatient rehabilitation units at a 118 large, midwestern teaching hospital. The two units have a total of 58 beds. Patient 119 120 population on these units include patients rehabilitating from surgery, strokes, 121 traumatic brain injuries, and other complications requiring additional care and 122 therapy. The units are staffed with nurses, nursing assistants, physical therapists, occupational therapists, speech therapists, and clinicians. The staff from these 123 124 disciplines have been trained to the piloted unit's "Transmission-based 125 Precautions (Isolation)" policy and were the population of this study. Inclusion criteria included any of the staff in a role mentioned above that entered a contact 126 127 or enteric isolation room on the piloted units. Exclusion criteria for participants included environmental services and dietary staff. 128 129 There were many key stakeholders involved in this project. Stakeholders 130 included both patients and any staff on the unit. The infection prevention team, 131 nurse educators, and the unit's leadership team are also key stakeholders. Project 132 members included: investigators, nurse managers, a clinical nurse specialist, 133 infection prevention manager, unit practice council members, and a 134 statistician. Leadership played an active role throughout the project and were 135 supportive of project implementation.

136 Interventions

137	Modifications to the initial intervention were made due
138	to a pandemic that occurred during the study period. The piloted unit's response
139	measures restricted any in-person education. Therefore,
140	the intervention was implemented virtually. The intervention was a virtual, multi-
141	disciplinary education program. Content distributed in the virtual education
142	program was determined based on data gathered in the pre-intervention phase and
143	the needs of the staff as determined by management and the facility's
144	infection prevention manager. All the material was approved by nurse
145	managers, the infection prevention team, and the clinical nurse specialist before
146	being sent to staff. Educational material was sent to all staff participating
147	in the project from the pilot units (nurses, nursing assistants, providers, physical
148	therapists, occupational therapists, and speech therapists).
149	The educational material was sent out twice during the two-
150	week intervention period. The first time it was sent to the staff. The second time it
151	was sent to the unit manager one week after staff received the material. The
152	material sent to staff contained an explanation of why the intervention was being
153	implemented virtually, facts on the importance of PPE policy compliance, and
154	statistics from the observational audits collected during the pre-intervention stage.
155	Additionally, the material included instructions on how staff can access their
156	facility's PPE policy and who to contact for questions, barriers identified in the
157	surveys and audits to proper PPE donning and doffing, a link to a visual aid
158	for proper donning and doffing technique, and a video demonstration of how to
159	properly don and doff PPE per the facility's policy. Finally, the material

160	contained contact information of the investigators and management, and staff
161	were encouraged to reach out to them with any additional questions. After reading
162	through the educational material and watching the video demonstration, staff were
163	asked to complete a post-intervention survey to assess PPE knowledge.
164	Study of the Interventions
165	The evaluation measures that were used to evaluate the success of
166	implementing this intervention were audits performed by trained investigators and
167	a survey. Observational audits were completed to measure baseline PPE
168	compliance rates and surveys measured staff knowledge and perception of PPE
169	use. The audit tool utilized was adapted from a tool by Telford, et al.
170	(2018). Permission for use was granted and modifications were made based on the
171	institutions "Transmission-based precaution (Isolation)" policy and with
172	recommendations from a leader of the institution's infection prevention team.
173	The survey tool utilized was adapted from a tool by Larson (2004) and
174	was shown to have a test-retest reliability coefficient of 0.86 and a standardized
175	alpha coefficient in item analysis of 0.80. Permission for use of the survey tool
176	was obtained. The survey contained four Likert scale questions, one open-ended
177	question, and four multiple-choice questions. Likert scale questions were utilized
178	for statistical analysis to compare pre- and post-intervention PPE knowledge. The
179	open-ended and multiple-choice questions were utilized to identify gaps in PPE
180	knowledge among staff. The areas identified for improvement guided the
181	education included in the intervention.

182 Measures

183	Much of the research suggested that observational audits and
184	surveys are an effective measurement tool for PPE use. As a result, an established
185	audit and survey were modified and utilized as tools in this study to
186	measure PPE compliance and knowledge. The goal for this project was
187	to complete the observational audits pre- and post-intervention. Pre-intervention
188	audits served as baseline data and showed investigators that PPE compliance was
189	suboptimal on the piloted units. Unfortunately, due to the COVID-19
190	pandemic and the response measures at the facility, investigators were unable to
191	perform post-intervention audits to determine if there was a change in
192	compliance following the educational intervention. The same survey tool was
193	given to staff both pre- and post-intervention to assess for change in
194	knowledge. Staff were able to complete the survey via a virtual link. Staff were
195	ensured that the survey was confidential.
196	The project team determined that based on research, and the inability to
197	complete post-intervention audits, that it would
198	be beneficial to continue auditing after the original study period to monitor
199	compliance long-term. The suggestion of continued audits was communicated to
200	leadership on the unit. The initial cost for this project to the investigators was
201	minimal, as investigators completed all the audits. However, there would be a
202	cost associated with the continued assessment of compliance if the institution had
203	to pay individuals for their time to complete audits.
204	To improve the value of the audits, inter-rater reliability was tested
205	between auditors. This was done by completing three audits independently on the

206	same observation and comparing the results of these audits. The audits were the
207	same between both investigators, thus ensuring interrater reliability. At times,
208	investigators were unable to complete full audits. If parts of the audits were
209	missed, they were marked "not visualized" and the incomplete data was excluded
210	from the results. All the surveys were fully completed.
211	Analysis
212	The initial plan was for the investigators to perform audits prior to the
213	implementation of the intervention for baseline data on PPE compliance that
214	could be compared to audits obtained following the intervention. However, due to
215	the pandemic, only baseline audits were obtained and no
216	statistical analysis between pre- and post-intervention audits were done.
217	Instead, data gathered from the baseline audits were calculated to provide staff
218	with baseline compliance statistics and details on where breaks in compliance
219	most often occurred. Therefore, instead of using the audits to examine the
220	effectiveness of the intervention, the audits were utilized to better understand
221	current compliance within the units, and trends in PPE
222	practices using percentages.
223	A survey to assess PPE knowledge was sent to staff before the
224	implementation of the intervention that gathered data that was compared to the
225	data obtained from the survey sent out after the intervention. The
226	same survey was sent both pre- and post-intervention and was compromised
227	of multiple-choice, sequence, and Likert-scale questions. The Likert-scale
228	questions were compared across the pre- and post-intervention groups with a two-

229	sample t-test. The rate at which the multiple-choice and sequence questions were
230	answered correctly was compared across these groups with Fisher's exact test.
231	Ethical Considerations
232	The investigators did not identify any conflicts of interest or need for
233	formal ethics review. All staff received the same education on proper PPE
234	usage. Additionally, all staff had adequate resources to locate the policy and had
235	the opportunity for any questions to be answered. The project was submitted and
236	received approval from both the piloted institution and the University's
237	Institutional Review Boards (IRBs).
238	Results
239	Data
240	The data analyzed from the survey are responses from 48 nurses prior to
241	and 36 nurses following an educational intervention on personal protective
242	equipment (PPE). The assessment tool consisted of four six-point Likert-scale
243	items (Questions 1-4). For three of the four items, a "Strongly agree" was coded
244	as 6 and "Strongly disagree" as 1. One of the items ("I don't have time to stay
245	
245	informed about available guidelines and guideline updates") was reverse-
245	informed about available guidelines and guideline updates") was reverse- coded such that a "Strongly disagree" was coded as 6. The average across all four
246	coded such that a "Strongly disagree" was coded as 6. The average across all four
246 247	coded such that a "Strongly disagree" was coded as 6. The average across all four questions was computed for each nurse and compared across the pre- and post-

251	The audit data reviewed was split up into four sections: setup, donning
252	PPE, doffing PPE, and use of PPE. Auditors either marked "yes" "no" or "not
253	visualized" for each point. Setup was further broken down into: door signage
254	visible, isolation cart within reach, and correct signage on the
255	door. The donning and doffing PPE sections were further broken down based on
256	the correct steps as per the institution's policy. The correct steps for donning PPE
257	are: hand hygiene performed before gathering supplies, staff donned gown first,
258	staff donned gloves second, the gown was security correctly (closed and tied), and
259	gloves and gown were donned outside of the room. The correct steps for doffing
260	PPE are: staff doffs gown and gloves in one motion (or gown first), staff disposes
261	PPE in the trash in patients' room, staff doffed PPE without visible contamination
262	to themselves, staff performs hand hygiene after doffing. The final section was
263	use of PPE and had one aspect: PPE was only worn inside the isolation room.
264	Methods
265	For the survey data, the average to Questions 1-4 was compared across the
266	pre- and post-intervention groups with a two-sample t-test. The rate at which the
267	knowledge questions were answered correctly was compared across these groups
268	with Fisher's exact test.
269	For audit data, only baseline data was obtained. Thus, percentages were
270	calculated to show baseline compliance rates.
271	Results
272	Table 1 shows the mean (standard error mean) for the average of

273 Questions 1-4. Additionally, it shows the count (percent) of correct answers for

www.manaraa.com

274	each of the four knowledge questions. The average response on the Likert-scale
275	questions was very similar (and positive) across the two groups: 5.1 in the pre-
276	intervention responses and 5.2 in the post-intervention responses on a 6-point
277	scale. Similarly, the percent correct on each of the four knowledge questions were
278	similar from pre-to-post. The percent of nurses answering correctly was highest
279	for Questions six, eight, and nine, with a notably lower correct response rate for
280	Question seven. None of the statistical tests performed resulted in statistically
281	significant differences across the two groups.
282	Audit data indicated that all four sections (setup, donning PPE, doffing
283	PPE, and Use of PPE) were completed correctly 21.6% (n=97) of the
284	time. Staff entered contact or enteric isolation rooms without utilizing any
285	PPE 21.6% (n=30) of the time. These observations were not included in the
286	subsequent calculations. Table 2 breaks down each section of the audit and shows
287	percentages of visualized observations that were done correctly per section. If
288	aspects of the section were "not visualized," or if staff did not wear PPE during
289	the encounter, the audits were excluded from data analysis.
290	A few additional percentages were calculated to further understand the
291	data. The most common step missed when donning PPE was hand hygiene.
292	Twenty percent (n=97) of the time staff did every other aspect of the audit
293	correctly except hand hygiene prior to putting on PPE. Donning was completed in
294	the incorrect order 22% (n=97) of the time, most frequently donning gloves
295	before gown.

296

Discussion

297 Summary

298	The first key finding of this project was that PPE compliance was
299	suboptimal. PPE was worn correctly only 21.6% of the encounters that were
300	audited. This finding confirmed the need for an intervention to help address PPE
301	compliance on the piloted units. Survey results indicated high PPE
302	knowledge both pre- and post-intervention. This indicates that the staff
303	knows how to properly utilize PPE, but not translating into practice. Thus, it is
304	important to identify what barriers to proper PPE usage exist to implement
305	strategies that address barriers and improve compliance.
306	Additionally, findings from the audits indicated that staff doffed PPE
307	correctly (72.1%) more consistently than donned PPE correctly (34.6%). This is
308	contradictory to the literature review conducted, as many of the studies reviewed
309	for this project indicated that doffing is often the area of concern (Antonian, et al.,
310	2019; Baloh, et al., 2019; Beam, et al., 2011; Doll, et al., 2017; Mitchel, et al.,
311	2013; Okamoto, et al., 2019; & Tomas, et al., 2015). This finding supports
312	the implementation of pre-intervention audits and surveys to help identify the
313	areas for improvement specific to the institution.
314	One key aspect of the audits that was consistently done well was room set
315	up. If a patient was on contact or enteric precautions, the room had the correct
316	signage visible and the isolation cart within reach for 99.3% of encounters. The
317	literature search completed for this project identified visual aids have shown to be
318	an effective intervention (Allen & Cronin, 2012; Alsmeyer, 2014; Doll, et al.,
319	2017; Larkin, et al., 2017). However, investigators did not implement visual aids,

as the findings from the audits indicated this was already successfully beingimplemented at the institution.

322	There were no statistically significant changes in the data analyzed from
323	the survey results. This was likely due to high scores on the pre-intervention
324	survey. Staff knowledge did not decrease post-intervention, but also did not have
325	much room to improve given the high score on the pre intervention survey. One
326	question was added to the post-intervention survey that was not on the pre-
327	intervention survey and that was "did you find this information helpful?" Staff
328	were asked to answer this "yes/no" question. 94.3% (n=35) staff members
329	indicated that the educational intervention was helpful.
330	Interpretation
331	Suboptimal PPE compliance was reported in much of the literature review
332	completed for this project (Allen & Cronin, 2012; Jain, Dogra, Mishra, Thakur, &
332 333	completed for this project (Allen & Cronin, 2012; Jain, Dogra, Mishra, Thakur, & Loomba, 2013; Larkin, et al., 2017). This was consistent with the findings from
333	Loomba, 2013; Larkin, et al., 2017). This was consistent with the findings from
333 334	Loomba, 2013; Larkin, et al., 2017). This was consistent with the findings from this project. Many of the studies reviewed for this project implemented
333 334 335	Loomba, 2013; Larkin, et al., 2017). This was consistent with the findings from this project. Many of the studies reviewed for this project implemented an educational intervention utilizing audits and surveys revealing a variety of
333 334 335 336	Loomba, 2013; Larkin, et al., 2017). This was consistent with the findings from this project. Many of the studies reviewed for this project implemented an educational intervention utilizing audits and surveys revealing a variety of results. This project implemented a multidisciplinary virtual education campaign
333 334 335 336 337	Loomba, 2013; Larkin, et al., 2017). This was consistent with the findings from this project. Many of the studies reviewed for this project implemented an educational intervention utilizing audits and surveys revealing a variety of results. This project implemented a multidisciplinary virtual education campaign to address low PPE compliance. Due to the COVID-19 pandemic, post-
 333 334 335 336 337 338 	Loomba, 2013; Larkin, et al., 2017). This was consistent with the findings from this project. Many of the studies reviewed for this project implemented an educational intervention utilizing audits and surveys revealing a variety of results. This project implemented a multidisciplinary virtual education campaign to address low PPE compliance. Due to the COVID-19 pandemic, post- intervention audits could not be obtained to identify if the intervention affected

improvement in PPE knowledge among staff members. This was consistent withsome of the studies reviewed in the literature.

344	The biggest reason investigators believe there was a difference between
345	observed and anticipated outcomes was due to the COVID-19 pandemic. Post-
346	intervention audits were not able to be completed, which was one of
347	the measurements to identify intervention effectiveness. While the survey
348	provided useful information, staff performed well on the pre-intervention survey,
349	and thus the intervention would not have allowed for much improvement. The
350	audit data would have been beneficial in determining the effectiveness of this
351	intervention. It can be inferred that because PPE knowledge was high pre-
352	intervention and compliance was low, barriers other than lack of PPE knowledge
353	exist that influence PPE compliance.
354	Another variation made to this project due to the pandemic was the
355	delivery method of the intervention. The initial plan was to deliver short, in-
356	person education sessions that would have included interactive education, such as
357	the use of glow germ, as this has shown some effectiveness in past studies (Allen
358	& Cronin, 2012; Andonian, et al., 2019; Beam, et al., 2011; Bruce, 2013; Larkin,
359	et al., 2017; & Tomas, et al., 2015). Following COVID-19 precautions, in person
360	educational sessions were not possible. Therefore, education was delivered
361	virtually and may have impacted project outcomes. One could argue that virtual
362	education would not be as effective, as staff could skim through or disregard
363	the education material. Additionally, virtual education misses the opportunity
364	to do any hands-on interaction. Interestingly, the survey asked staff what form of

365	communication is most beneficial to them, and the most common answer was e-
366	mail or online (23%), supporting the use of a virtual intervention. It is also cost-
367	effective, can be accessed at the user's convenience, repeated as needed, easily
368	replicated, and provides a safe learning environment, which is required during a
369	pandemic. Ultimately, more research needs to be done on the most effective
370	education delivery method.
371	Despite the lack of clinically significant data, staff reported that the
372	education intervention was helpful. Additionally, the intervention was
373	inexpensive and required minimal resources other than time. Because staff felt the
374	intervention was useful, it is worth considering as a cost-effective intervention to
375	improve PPE knowledge and compliance. Further research is needed on effective
376	delivery method for an intervention addressing PPE.
376 377	delivery method for an intervention addressing PPE.
	·
377	Limitations
377 378	Limitations One key aspect of this project was obtaining baseline information to
377 378 379	Limitations One key aspect of this project was obtaining baseline information to understand current gaps in knowledge and barriers to PPE usage for staff. This
377 378 379 380	Limitations One key aspect of this project was obtaining baseline information to understand current gaps in knowledge and barriers to PPE usage for staff. This allowed the intervention to the specific needs of the piloted units. However, this
377 378 379 380 381	Limitations One key aspect of this project was obtaining baseline information to understand current gaps in knowledge and barriers to PPE usage for staff. This allowed the intervention to the specific needs of the piloted units. However, this limits the generalizability of the project.
377 378 379 380 381 382	Limitations One key aspect of this project was obtaining baseline information to understand current gaps in knowledge and barriers to PPE usage for staff. This allowed the intervention to the specific needs of the piloted units. However, this limits the generalizability of the project. One limitation noted was the Hawthorne effect. Investigators introduced
377 378 379 380 381 382 383	Limitations One key aspect of this project was obtaining baseline information to understand current gaps in knowledge and barriers to PPE usage for staff. This allowed the intervention to the specific needs of the piloted units. However, this limits the generalizability of the project. One limitation noted was the Hawthorne effect. Investigators introduced themselves and the project to the unit before implementation. They also checked

387 results for audit compliance, as investigators' presence may have influenced the

388 staff's PPE decisions knowing they were being audited.

389 Another limitation was that staff often doffed

390 PPE in the patient's room with the door closed. This limited the ability for

investigators to fully see the doffing process. If investigators were not able to

392 view the doffing process in full, it was marked "not visualized" and this data

393 was excluded from the final percentages.

394 Conclusion

395 Use of PPE is a standard practice in healthcare institutions across the

396 United States in preventing the spread of HAIs. HAIs are not only costly but

397 potentially fatal. Proper use of PPE is one of the best ways to protect patients and

398 healthcare workers from HAIs (Wisconsin Department of Health Services,

2018). Despite this knowledge, research has indicated that compliance rates for

400 proper PPE usage are suboptimal, thereby, putting patients and staff at risk for

401 developing HAIs. This project sought to identify current compliance rates for

402 proper PPE usage, gaps in knowledge and barriers for consistent usage, and

403 an effective intervention to improve staff knowledge and compliance. The main

404 finding of this project was that while knowledge on the proper use of PPE was405 adequate, compliance rates were very low.

While this project could be easily implemented in a variety of settings to improve PPE compliance and knowledge, adjustments would need to be made to improve the effectiveness of the intervention. Further research is recommended to identify why adequate staff knowledge of PPE is not being implemented into

- 410 practice. Methods to overcome barriers is also recommended. Finally, if an
- 411 educational intervention is going to be explored to address the identified barriers,
- 412 research should be done to determine the most effective form of education
- 413 delivery method.

References

AHRQ. (2019). AHRQ's healthcare-associated infections program. Retrieved from <u>https://www.ahrq.gov/hai/index.html</u>

Allen, S. & Cronin, S. (2012). Improving staff compliance with isolation precautions through use of an educational intervention and behavioral contract. *Dimensions of Critical Care Nursing*, *31*(5), 290-293. doi:10.1097/DCC.0b013e31826199e8.

- Alsmeyer, Megan. (2014). Increasing compliance of personal protective equipment selection and use of isolation precautions among RNs and NAs on med-surg unit (Unpublished master's thesis). University of San Francisco, California.
- Andonian, J., Kazi, S., Therkorn, J., Benishek, L., Billman, C., Schiffhauer, M., & Maragakis, L. (2019). Effect of an intervention package and teamwork training to prevent healthcare personnel self-contamination during personal protective equipment doffing. *Clinical Infectious Diseases*, 69, S248–S255. doi:10.1093/cid/ciz618
- Baloh, J., Reisinger, H. S., Dukes, K., Silva, J. P. da, Salehi, H. P., Ward, M., & Herwaldt, L. (2019). Healthcare workers' strategies for doffing personal protective equipment. *Clinical Infectious Diseases, 69*, S192–S198. doi:10.1093/cid/ciz613
- Beam, E., Gibbs, S., Boulter, K., Beckerdite, M., & Smith, P. (2011). A method for evaluating health care workers' personal protective equipment

technique. American Journal of Infection Prevention 39(5), 415-420. doi:10.1016/j.ajic.2010.07.009

- Brown, C. G. (2014) The Iowa model of evidence-based practice to promote quality care: An illustrated example in oncology nursing. *Clinical Journal* of Oncology Nursing, 18(2), 157-159. doi: 10.1188/14.CJON.157-159.
- Bruce, N. (2013). Improving compliance with healthcare associated infection (HAI) practice guidelines to reduce the acquisition of HAIs (Unpublished doctoral dissertation). University of Massachusetts Amherst, Massachusetts.
- Doll, M., Feldman, M., Hartigan, S., Sanogo, K., Stevens, M., McReynolds, M.,
 & Bearman, G. (2017). Acceptability and necessity of training for optimal personal protective equipment use. *Infection Control & Hospital Epidemiology*, 38(2), 226–229. doi:10.1017/ice.2016.252
- Doody, C. & Doody, O. (2011). Introducing evidence into nursing practice: Using the IOWA model. *British Journal of Nursing*, 20(11), 661-664. doi: 10.12968/bjon.2011.20.11.661

Fairview Health Services. Transmission-based precautions (isolation). Updated March 2017.

Retrieved

from http://intranet.fairview.org/policies/category/infectionpreventioncont rol/s_140010

- Jain, M., Dogra, V., Mishra, B., Thakur, A., & Loomba, P.S. (2013). Factors limiting the usage of personal protective equipment in a tertiary-care hospital. *The Canadian Journal of Infection Control*, 28(2), 105-110.
- Larkin, J., Lee, D., Kruedelback, G., Maxwell, T., Burroughs, R., Emery, C., & Salamone, D. (2017). Target-improving personal protective equipment (PPE) compliance: A three year study. *American Journal of Infection Control, 45*(6), S62. doi:10.1016/j.ajic.2017.04.100
- Larson E. (2004). A tool to assess barriers to adherence to hand hygiene guideline. *American Journal of Infection Control*, *32*(1), 48–51.
- Mitchell, R., Roth, V., Gravel, D., Astrakianakis, G., Bryce, E., Forgie, S.,
 Johnston, L., Taylor, G., & Vearncombe, M. (2013). Are health care
 workers protected? An observational study of selection and removal of
 personal protective equipment in Canadian acute care hospitals. *American Journal of Infection Control*, 41(3), 240

244. doi:10.1016/j.ajic.2012.04.332

Office of Disease Prevention and Health Promotion. (2019). Healthcare associated infections. Retrieved from <u>https://health.gov/hcq/prevent-</u> hai.asp

Okamoto, K., Rhee, Y., Schoeny, M., Lolans, K., Cheng, J., Reddy, S., &
Popovich, K. J. (2019). Impact of doffing errors on healthcare worker selfcontamination when caring for patients on contact precautions. *Infection Control & Hospital Epidemiology*, 40(5), 559–565.
doi:10.1017/ice.2019.33

- Stone P. W. (2009). Economic burden of healthcare-associated infections: An American perspective. *Expert review of pharmacoeconomics & outcomes research*, 9(5), 417–422. doi:10.1586/erp.09.53
- Telford, B., Healy, R., Flynn, E., Moore, E., Ravi, A., & Geary, U. (2019). Survey of isolation room equipment and resources in an academic hospital. *International Journal of Health Care Quality Assurance*, *32*(6), 991–1003. doi:10.1108/IJHCQA-10-2018-0254
- Titler, M., Kleiber, C., Steelman, V., Rakel, B., Budreau, G., Everett, L., Buckwalter, K., Tripp-Reimer, T., & Goode, C. (2001). The Iowa model of evidence-based practice to promote quality care. *Critical Care Nursing Clinical North America*, 13(4), 497-509.
- Tomas M. E, Kundrapu S., Thota P., Sunkesula, V. C., Cadnum, J., Mana, T., Jencson, A., O'Donnell, M., Zabarsky, T. F., Hecker, M. T., Ray, A. J., Wilson, B. M., & Donskey, C. J. (2015). Contamination of health care personnel during removal of personal protective equipment. *Journal of the American Medical Association Internal Medicine*, 175(12):1904–1910. doi:10.1001/jamainternmed.2015.4535
- Wisconsin Department of Health Services. (2018). *Infection control and prevention- personal protective equipment (PPE)*. Retrieved from <u>https://www.dhs.wisconsin.gov/ic/ppe.htm</u>

Table 1

Survey Results

	Avg Q1- Q4	% correct Q6	% correct Q7	% correct Q8	% correct Q9
Pre	5.1 (0.1)	45 (94)	28 (58)	43 (90)	48 (100)
Post	5.2 (0.1)	31 (89)	20 (59)	34 (94)	36 (100)
p-value	0.34	0.45	1.00	0.69	1.00

Table 2

Audit Results

	Yes	No	Not Visualized	Did not utilize PPE for encounter	Visualized observations done correctly per
					section (%)
Setup	138	1	0	0	99.3%
Don PPE	37	70	2	30	34.6%
Doff PPE	49	19	41	30	72.1%
Use of PPE	96	5	8	30	95%

